MODULE BRACES: THEORY AND APPLICATIONS

Ilaria Del Corso

Omaha, May 30, 2023

Dipartimento di Matematica Università di Pisa

Generalities on skew braces

A skew brace is a group (N, +) together with one of the following

 an additional group operation "○" on N such that the following brace axiom holds for x, y, z ∈ N

$$x \circ (y+z) = (x \circ y) - x + (x \circ z)$$
.

• a Gamma Function, namely a function $\gamma: N \to \operatorname{Aut}(N, +)$ such that, for $x, y \in N$,

$$\gamma(\mathbf{x} + \gamma_{\mathbf{x}}(\mathbf{y})) = \gamma_{\mathbf{x}}\gamma_{\mathbf{y}}$$

• an additional binary operation \star such that, for all $x, y, z \in N$,

$$\mathbf{x} \star (\mathbf{y} + \mathbf{z}) = \mathbf{x} \star \mathbf{y} + \mathbf{y} + \mathbf{x} \star \mathbf{z} - \mathbf{y}$$

with the additional condition that the operation \circ defined by

$$\mathbf{x} \circ \mathbf{y} = \mathbf{x} + \mathbf{x} \star \mathbf{y} + \mathbf{y}$$

defines on N a group structure.

The relations between the \circ operation and the GF γ and the \star operation defining the same skew brace, are given by

$$\gamma_x(y) = -x + x \circ y$$
 $\gamma_x(y) = x \star y + y$ $\forall x, y \in N$

and the properties of $\circ,$ \star and the function γ correspond to each other.

Let *I* be subset of a skew brace $(N, +, \circ) = (N, +, \gamma)$.

- *I* is a subskew brace if it is a subgroup both of (*N*, +) and (*N*, ∘); In terms of the GF: I is a subgroup of (*N*, +) and it is γ(*I*) invariant, (γ_x(*I*) ⊆ *I* for each x ∈ *I*). This means that γ_{|I} is a GF for (*I*, +)).
- I is a left ideal if it is a subgroup of (N, +) and is $\gamma(N)$ invariant.
- *I* is an ideal if it is γ(N) invariant and it is a normal subgroup of both (N, +) and (N, ∘).

{ideals of N} \subseteq {left ideals of N} \subseteq {subskew braces of N}

Let $(M, +, \gamma)$ and $(N, +', \gamma')$ be skew braces, and let $f: M \to N$ be an isomorphism of the additive groups.

f is skew brace isomorphism \iff *f* is also a morphism of the multiplicative groups $\iff f\gamma_x = \gamma'_{f(x)}f$, for each $x \in M$.

Braces and radical rings

A brace is a skew brace with abelian additive group.

Example. Let $(N, +, \cdot)$ be a radical ring.

 $(N, +, \cdot)$ is a brace when we take $\star = \cdot$.

The operation \circ of this brace is $x \circ y = x + x \cdot y + y$ and it is called the adjoint operation.

Any radical ring is a two-sided brace, namely a brace for which both the left-brace-axiom and the right-brace-axiom hold.

Conversely, if $(N, +, \circ)$ is a two-sided brace, then defining

$$x \cdot y = -x + x \circ y - y$$

we have that $(N, +, \cdot)$ is a radical ring.

The gamma function associated to the brace $(N, +, \circ)$ arising from a radical ring, is given by

$$\gamma_x(y) = -x + x \circ y = (x+1)y.$$

Module braces

Module braces

Let $(N, +, \circ) = (N, +, \gamma) = (N, +, \star)$ be a brace and assume that (N, +) is a *R*-module over some ring *R*.

We say that N is an R-(module) brace if

 $\gamma \colon \mathbb{N} \to \operatorname{Aut}_{\mathbb{R}}(\mathbb{N})$

namely, for all $x, y \in N$ and $r \in R$,

 $r\gamma_x(y) = \gamma_x(ry).$

Equivalently, in terms of the \star operation,

$$r(x \star y) = x \star ry.$$

With this language, a brace is called \mathbb{Z} -brace.

The case when R is a field has been already considered by F. Catino, I. Colazzo, and P. Stefanelli (2015, 2019) and by A. Smoktunowicz (2022)

Examples

1) An *R*-module *N* with the trivial brace structure is always an *R*-brace, since the corresponding gamma function is the trivial map $x \mapsto \gamma_x = id$.

2) Let
$$N = (N, +, \cdot)$$
 be a radical ring.

The associated gamma function is $\gamma_x(y) = (1 + x)y$.

If (N, +) has a right *R*-module structure, then $(N, +, \circ)$ is an *R*-module brace since $\gamma_x \in Aut_R(N)$ for all x.

3) Let $R = \mathbb{Z}[i]$, let (N, +) be the additive group $\mathbb{Z}[i] \times \mathbb{Z}[i]$, and define $(\alpha_1, \beta_1) \circ (\alpha_2, \beta_2) = (\alpha_1 + (-1)^{\Re(\alpha_1)} \alpha_2, \beta_1 + (-1)^{\Re(\alpha_1)} \beta_2)$

Then $(N, +, \circ)$ is an *R*-brace.

4) Let $N = \mathbb{Z}[i]$ considered as a $\mathbb{Z}[i]$ -module, and let $\gamma \colon \mathbb{Z}[i] \to Aut(\mathbb{Z}[i])$ be the map defined by

$$\gamma_{(a+ib)}(x+iy) = ((-1)^a x + iy).$$

It is easy to verify that γ is a gamma function, so $(N, +, \circ)$ is a brace. However, N is not a $\mathbb{Z}[i]$ -brace, since $\gamma_{(a+ib)} \notin \operatorname{Aut}_{\mathbb{Z}[i]}(\mathbb{Z}[i])$ for a odd.

```
Def. Let (N, +, \circ) be a R-brace and let I \subseteq N. We call I an
R-subbrace / left R-ideal / R-ideal
if it is a
subbrace / left ideal / ideal + R-submodule
```

The substructures of an R-braces have a good behaviour

- If I is an R-ideal of N, then the quotient brace N/I is an R-brace
- The elements of the right series of an R-brace are R-ideals
- The elements of the left series of an R-brace are left R-ideals

A splitting theorem

Let R be a commutative ring with 1, and let

$$R = \bigoplus_{i=1}^{t} R_i$$

be a direct sum decomposition of R into ideals. Let e_1, \ldots, e_t be the *orthogonal idempotents* associated to the decomposition $(1 = \sum_{i=1}^{t} e_i)$.

Proposition. Let (N, +) be an *R*-module. Then,

$$N = \bigoplus_{i=1}^{t} e_i N, \tag{1}$$

where $e_i N$ is an *R*-module, which is annihilated by R_j for all $j \neq i$. If $(N, +, \circ)$ is an *R*-brace, then, each $e_i N$ is a left *R*-ideal of the brace *N*. Moreover,

(1) is an R-braces decomposition \iff all the e_iN are (R-)ideals of N.

Finite braces

Let $R = \mathbb{Z}$ and let $(N, +, \circ)$ be a finite brace.

The action of \mathbb{Z} on N can not be faithful, so N is a $\mathbb{Z}/d\mathbb{Z}$ -module for some $d \neq 0$.

Let $d = p_1^{a_1} \dots p_t^{a_t}$, where the p_i 's are pairwise distinct primes, then

$$\mathbb{Z}/d\mathbb{Z} \cong \bigoplus_{i=1}^t \mathbb{Z}/p_i^{\mathsf{a}_i}\mathbb{Z}$$

$$N = \bigoplus_{i=1}^t N_i,$$

where N_i is the Sylow p_i -subgroup of (N, +) and they are also Sylow p_i -subgroup of (N, \circ) .

If (N, \circ) is nilpotent we recover the core of [Theorem 1, Byott JA 2013] for braces.

Finite $\mathcal{O}_{\mathcal{K}}$ -braces

Let K be a number field and let \mathcal{O}_K be its ring of integers.

Let $(N, +, \circ)$ be a finite $\mathcal{O}_{\mathcal{K}}$ -brace.

The action of \mathcal{O}_K on N can not be faithful, so N is a \mathcal{O}_K/I -module for some *non-zero* ideal I.

Let $I = P_1^{a_1} \dots P_t^{a_t}$, where the P_i 's are pairwise distinct prime ideals of \mathcal{O}_K , then

$$\mathcal{O}_{\mathcal{K}}/I\cong \bigoplus_{i=1}^{l}\mathcal{O}_{\mathcal{K}}/P_{i}^{\mathsf{a}_{i}}.$$

We get

$$\mathsf{N}=\bigoplus_{i=1}^t\mathsf{N}_i,$$

where N_i is the P_i -component of (N, +) and is a left \mathcal{O}_K -ideal of the brace N.

The previous proposition says that the decomposition of N is an \mathcal{O}_{K} -brace decomposition if and only if all the N_{i} are ideals of N.

Corollary. Let $R = \bigoplus_{i=1}^{t} R_i$ be a commutative ring with identity, with associated orthogonal idempotents $\{e_1, \ldots, e_t\}$.

Let $(N, +, \cdot)$ be a radical ring. If N is an R-algebra, then,

$$N = \bigoplus_{i=1}^{t} e_i N \tag{2}$$

as *R*-braces, namely

$$1+N=\bigoplus_{i=1}^t(1+e_iN).$$

Relation between the additive and the multiplicative group of a module brace Let D be a PID, and let M be a f.g. torsion D-module. We define

 $\operatorname{rank}_D M = \# indecomp.$ cyclic factors of the D-mod decomposition of M

Theorem 1. Let p be a prime number, and let D be a PID such that p is a prime in D. Let $(N, +, \circ)$ be a D-brace of order a power of p.

Assume that $r = rank_D N .$

Then (N, +) and (N, \circ) have the same number of elements of each order. In particular, if (N, \circ) is abelian, then $(N, +) \cong (N, \circ)$.

- [FCC12, Bac16] give the same result for $D = \mathbb{Z}$.
- For a *D*-braces, the condition of having few ciclic factors in the *D*-module decomposition can be much weaker than the condition of having few ciclic factors in the \mathbb{Z} -module decomposition. In fact, if $D/pD = \mathbb{F}_{p^{\lambda}}$, then

$$\operatorname{rank}_{\mathbb{Z}} N = \lambda \cdot \operatorname{rank}_{D} N.$$

Let $\mathbb{Q}_{p}(\lambda)$ be the unramified extensions of degree λ of the field of the *p*-adic numbers \mathbb{Q}_{p} . Its ring of integers $\mathbb{Z}_{p}(\lambda)$ is an examples of ring *D* fulfilling the request of the theorem.

Corollary. Let $(N, +, \circ)$ be a $\mathbb{Z}_p(\lambda)$ -brace of order a power of p. If

 $\operatorname{rank}_{\mathbb{Z}_p(\lambda)} N < (p-1),$

 $\operatorname{rank}_{\mathbb{Z}} N < \lambda(p-1),$

then (N, +) and (N, \circ) have the same number of elements of each order. In particular, if (N, \circ) is abelian, then $(N, +) \cong (N, \circ)$.

Lemma. Let $(S, \mathfrak{m}, \mathbb{F}_{p^{\lambda}})$ be a finite local ring. Then every S-brace is also a $\mathbb{Z}_p(\lambda)$ -brace, by restriction of scalars.

Proof. Use an Hensel's type argument.

Corollary. Let $(S, \mathfrak{m}, \mathbb{F}_{p^{\lambda}})$ be a local ring, and let $(N, +, \circ)$ be an *S*-brace of order a power of p, such that $\operatorname{rank}_{\mathbb{Z}} \mathbb{N} < \lambda(p-1)$.

Then (N, +) and (N, \circ) have the same number of elements of each order. In particular, if (N, \circ) is abelian, then $(N, +) \cong (N, \circ)$.

Finite module brace over a general ring

Let R be any commutative ring, and let N be a finite R-brace.

Then $A = R / Ann_R(N)$ is finite, and therefore artinian. So,

$$A = \bigoplus_{i=1}^{t} A_i$$

where each $(A_i, \mathfrak{m}_i, \mathbb{F}_{p^{\lambda_i}})$ is a local finite ring.

Let e_1, \ldots, e_t be the orthogonal idempotents of the decomposition of A. Letting $N_i = Ne_i$, we have

$$\mathsf{N} = \bigoplus_{i=1}^{t} \mathsf{N}_{i},\tag{3}$$

where this equality holds for N as a module, and for N as a module brace in the case when N_1, \ldots, N_t are ideals of N.

Since N_i is a A_i -brace, we can study each of them by our method, if they are small.

In particular

Proposition. Let N be a finite A-brace and assume that N_1, \ldots, N_t are ideals of the brace N. If, $\forall i \in \{1, \ldots, t\}$,

$$\operatorname{rank}_{\mathbb{Z}}(N_i) < \lambda_i(p_i - 1)$$

then (N, +) and (N, \circ) have the same number of elements of each order, and if (N, \circ) is abelian, then $(N, +) \cong (N, \circ)$.

An application to Fuchs' problem

In Fuchs' book "Abelian Groups" (1960) the following question is posed (Problem 72)

Characterize the groups which are the groups of all units in a commutative and associative ring with identity.

The problem had already been considered in some particular cases

• The Dirichlet's Unit Thm (1846): K number field $[K : \mathbb{Q}] = r + 2s$, \mathcal{O}_K ring of integers

$$\mathcal{O}_{K}^{*}\cong\mathbb{Z}/2n\mathbb{Z}\times\mathbb{Z}^{r+s-1}$$

 G. Higman (1940) discovered a perfect analogue of Dirichlet's Unit Theorem for a group ring Z[T] where T is a finite abelian group:

$$(\mathbb{Z}[T])^* \cong \mathbb{Z}/2\mathbb{Z} \times T \times \mathbb{Z}^n$$

for a suitable explicit constant n = n(T).

Fuchs' question for finitely generated abelian groups

(idc+ R.Dvornicich AMPA18 and BLMS18; idc JLMS 2020)

A ring with 1, A^* group of units of A. Assume that A^* is finitely generated and abelian

 $A^*\cong (A^*)_{tors} imes \mathbb{Z}^{r_A}$

Problem: what groups arise?

- T finite abelian group: $\exists A \in C$ such that $(A^*)_{tors} \cong T$?
- if $(A^*)_{tors} \cong T$ what can we say on r_A ?

We are interested in the minimum value that the rank can assume for a fixed torsion part T, since increase the rank is easy.

Let $A_0(=\mathbb{Z} \text{ or } \mathbb{Z}/n\mathbb{Z})$ be the fundamental subring of A and consider the ring $R = A_0[(A^*)_{tors}]$, which is a subring of A. Then $R^* \leq A^*$, so

$$(A^*)_{tors} = (R^*)_{tors}$$

and

 $r_A \geq r_R$.

So, up to changing $A \leftrightarrow R = A_0[(A^*)_{tors}]$, we can restrict ourself to consider:

commutative rings which are finitely gen. and integral over A_0 . This class of rings is much simpler to study, but allow us to obtain ALL the realisable groups of units.

Proposition (Pearson & Schneider 1970)

Let A be a commutative ring which is finitely generated and integral over its fundamental subring. Then $A = A_1 \oplus A_2$, where A_1 is a finite ring and the torsion ideal of A_2 is contained in its nilradical.

We will say that A is a TN ring if its torsion ideal is contained in the nilradical.

We are left to study finite rings and TN rings.

Let A be a commutative ring with nilradical \mathfrak{N} . For any ideal $\mathfrak{I} \subseteq \mathfrak{N}$ we have the following exact sequence

$1 \rightarrow 1 + \Im \rightarrow A^* \rightarrow (A/\Im)^* \rightarrow 1$

- the ring A/\Im is simpler to study, for example for $\Im = \mathfrak{N}$ is reduced;
- ℑ is a radical (nilpotent) ring and also a A-algebra, so we can study the A-brace (ℑ, +, ∘) via our previous result that, for radical rings, holds in the following stronger form.

Theorem 2. Let *N* be a commutative radical ring of order a power of an odd prime *p*. Suppose that $(N, +, \circ)$ is a *A*-brace. If (N, +) or (N, \circ) is "small with respect to *A*", then $(N, +) \cong (N, \circ)$.

Proof (sketch). If (N, +) is "A-small" we can apply Theorem 1, and get $(N, +) \cong (N, \circ)$.

If (N, \circ) is "A-small" we have an argument, specific for nilpotent rings, which guarantees that also (N, +) is small, so Theorem 1 gives $(N, +) \cong (N, \circ)$.

Finite rings

- We can reduce to consider the case $(A, \mathfrak{m}, \mathbb{F}_{p^{\lambda}})$ finite local ring.
- The exact sequence for $\mathfrak{I}=\mathfrak{m}$ becomes

$$1 \to 1 + \mathfrak{m} \to A^* { o} \mathbb{F}_{p^{\lambda}}^* \to 1.$$

and splits, so

$$\mathsf{A}^* = \mathbb{F}^*_{p^\lambda} imes 1 + \mathfrak{m}$$

Theorem 3. The *small* finite abelian groups occurring as group of units of finite local rings $(A, \mathfrak{m}, \mathbb{F}_{p^{\lambda}})$ of characteristic a power of an <u>odd</u> prime p are **exactly** those of the form

$$\mathbb{F}_{p^{\lambda}}^{*} \times H^{\lambda},$$

where λ is a positive integer, and H varies in the class of finite abelian p-groups with $rank_{\mathbb{Z}}(H) .$

Here small means λ -small, i.e., $rank_{\mathbb{Z}}(A^*)_p < \lambda(p-1)$

1

TN rings

If A is TN, by choosing $\mathfrak{I}=\mathfrak{N}_{\mathit{tors}},$ we get the following exact sequence

$$1 \rightarrow \mathbf{1} + \mathfrak{N}_{tors} \hookrightarrow A^* \stackrel{\phi}{\rightarrow} (A/\mathfrak{N}_{tors})^* \rightarrow 1.$$

where A/\mathfrak{N}_{tors} is a torsion free ring.

The possibility for $(A/\mathfrak{N}_{tors})^*$ are known, by the following

Theorem (idc JLMS20). Let T be a finite abelian group of even order. Then there exists an explicit constant g(T) such that the following holds:

$$T \times \mathbb{Z}^r$$

is the group of units of a torsion-free ring if and only if $r \ge g(T)$.

• We are left to study $1 + \mathfrak{N}_{tors}$.

 $1+\mathfrak{N}_{\textit{tors}}$ is the adjoint group of $\mathfrak{N}_{\textit{tors}}$ and

 $(\mathfrak{N}_{tors},+,\circ)$ is a module brace over the ring A

We appeal again to our Thm 2 applied to the *p*-Sylow of \mathfrak{N}_{tors} ($p \neq 2$).

Theorem 2. Let *N* be a commutative radical ring of order a power of an odd prime *p*. Suppose that $(N, +, \circ)$ is a *A*-brace. If (N, +) or (N, \circ) is "small with respect to *A*", then $(N, +) \cong (N, \circ)$.

A-small means $rank_{\mathbb{Z}}N < \frac{\lambda}{\lambda}(p-1)$ where λ can be described case by case...

Remark. Very few is known in case p = 2.

Cyclic groups

Theorem (Pearson and Schneider (1970))

A *finite cyclic group* is the group of units of a ring if and only if its order is the product of a set of pairwise coprime integers of the following list:

- a) $p^{\lambda} 1$ where p is a prime and $\lambda \geq 1$;
- b) $(p-1)p^k$ where p > 2 is a prime and $k \ge 1$;
- c) 2d where d > 0 is odd;
- d) 4d where d is an odd integer and $\forall p | d, p \equiv 1 \pmod{4}$.

Remark. $\mathbb{Z}/44\mathbb{Z}$ and $\mathbb{Z}/328\mathbb{Z}$ are not realisable (44 = 4 × 11, and 328 = 8 × 41 are not in the list). On the other hand $\mathbb{Z}[\zeta_{44}]^* \cong \mathbb{Z}/44\mathbb{Z} \times \mathbb{Z}^9$ and $\mathbb{Z}[\zeta_{328}]^* \cong \mathbb{Z}/328\mathbb{Z} \times \mathbb{Z}^{79}$ (these are the minimum values for the rank also in the class of torsion free rings).

Theorem

 $\mathbb{Z}/44\mathbb{Z} \times \mathbb{Z}^r \text{ is realisable } \iff r \ge 9$ $\mathbb{Z}/328\mathbb{Z} \times \mathbb{Z}^r \text{ is realisable } \iff r \ge 1$

- DEL CORSO I., Module braces: relations between the additive and the multiplicative group arXiv:2208.01592
- DEL CORSO I., STEFANELLO L., Fuchs'problem via module braces, *work in progress*.

