MODULE BRACES: THEORY AND APPLICATIONS

Ilaria Del Corso
Omaha, May 30, 2023
Dipartimento di Matematica Università di Pisa

Generalities on skew braces

A skew brace is a group $(N,+)$ together with one of the following

- an additional group operation "○" on N such that the following brace axiom holds for $x, y, z \in N$

$$
x \circ(y+z)=(x \circ y)-x+(x \circ z) .
$$

- a Gamma Function, namely a function $\gamma: N \rightarrow \operatorname{Aut}(N,+)$ such that, for $x, y \in N$,

$$
\gamma\left(\mathbf{x}+\gamma_{\mathbf{x}}(\mathbf{y})\right)=\gamma_{\mathbf{x}} \gamma_{\mathbf{y}}
$$

- an additional binary operation \star such that, for all $x, y, z \in N$,

$$
x \star(y+z)=x \star y+y+x \star z-y
$$

with the additional condition that the operation \circ defined by

$$
x \circ y=x+x \star y+y
$$

defines on N a group structure.

Relations between $(N,+, \circ),(N,+, \gamma)$ and $(N,+, \star)$

The relations between the o operation and the GF γ and the \star operation defining the same skew brace, are given by

$$
\gamma_{x}(y)=-x+x \circ y \quad \gamma_{x}(y)=x \star y+y \quad \forall x, y \in N
$$

and the properties of $0, \star$ and the function γ correspond to each other.

Let I be subset of a skew brace $(N,+, \circ)=(N,+, \gamma)$.

- I is a subskew brace if it is a subgroup both of $(N,+)$ and (N, \circ); In terms of the GF: I is a subgroup of $(N,+)$ and it is $\gamma(I)$ invariant, $\left(\gamma_{x}(I) \subseteq I\right.$ for each $\left.x \in I\right)$. This means that $\gamma_{\| I}$ is a GF for $\left.(I,+)\right)$.
- I is a left ideal if it is a subgroup of $(N,+)$ and is $\gamma(N)$ invariant.
- I is an ideal if it is $\gamma(N)$ invariant and it is a normal subgroup of both $(N,+)$ and (N, \circ).
$\{$ ideals of $N\} \subseteq\{$ left ideals of $N\} \subseteq\{$ subskew braces of $N\}$
Let $(M,+, \gamma)$ and $\left(N,+^{\prime}, \gamma^{\prime}\right)$ be skew braces, and let $f: M \rightarrow N$ be an isomorphism of the additive groups.
f is skew brace isomorphism $\Longleftrightarrow f$ is also a morphism of the multiplicative groups $\Longleftrightarrow f \gamma_{x}=\gamma_{f(x)}^{\prime} f$, for each $x \in M$.

Braces and radical rings

A brace is a skew brace with abelian additive group.
Example. Let $(N,+, \cdot)$ be a radical ring.
$(N,+, \cdot)$ is a brace when we take $\star=\cdot$
The operation \circ of this brace is $x \circ y=x+x \cdot y+y$ and it is called the adjoint operation.

Any radical ring is a two-sided brace, namely a brace for which both the left-brace-axiom and the right-brace-axiom hold.

Conversely, if $(N,+, \circ)$ is a two-sided brace, then defining

$$
x \cdot y=-x+x \circ y-y
$$

we have that $(N,+, \cdot)$ is a radical ring.
The gamma function associated to the brace $(N,+, \circ)$ arising from a radical ring, is given by

$$
\gamma_{x}(y)=-x+x \circ y=(x+1) y
$$

Module braces

Module braces

Let $(N,+, \circ)=(N,+, \gamma)=(N,+, \star)$ be a brace and assume that $(N,+)$ is a R-module over some ring R.

We say that N is an R-(module) brace if

$$
\gamma: N \rightarrow \operatorname{Aut}_{R}(N)
$$

namely, for all $x, y \in N$ and $r \in R$,

$$
r \gamma_{x}(y)=\gamma_{x}(r y)
$$

Equivalently, in terms of the \star operation,

$$
r(x \star y)=x \star r y .
$$

With this language, a brace is called \mathbb{Z}-brace.
The case when R is a field has been already considered by F. Catino, I. Colazzo, and P. Stefanelli $(2015,2019)$ and by A. Smoktunowicz (2022)

Examples

1) An R-module N with the trivial brace structure is always an R-brace, since the corresponding gamma function is the trivial map $x \mapsto \gamma_{x}=\mathrm{id}$.
2) Let $N=(N,+, \cdot)$ be a radical ring.

The associated gamma function is $\gamma_{x}(y)=(1+x) y$.
If $(N,+)$ has a right R-module structure, then $(N,+, \circ)$ is an R-module brace since $\gamma_{x} \in \operatorname{Aut}_{R}(N)$ for all x.
3) Let $R=\mathbb{Z}[i]$, let $(N,+)$ be the additive group $\mathbb{Z}[i] \times \mathbb{Z}[i]$, and define

$$
\left(\alpha_{1}, \beta_{1}\right) \circ\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1}+(-1)^{\Re\left(\alpha_{1}\right)} \alpha_{2}, \beta_{1}+(-1)^{\Re\left(\alpha_{1}\right)} \beta_{2}\right)
$$

Then $(N,+, \circ)$ is an R-brace.
4) Let $N=\mathbb{Z}[i]$ considered as a $\mathbb{Z}[i]$-module, and let $\gamma: \mathbb{Z}[i] \rightarrow \operatorname{Aut}(\mathbb{Z}[i])$ be the map defined by

$$
\gamma_{(a+i b)}(x+i y)=\left((-1)^{a} x+i y\right)
$$

It is easy to verify that γ is a gamma function, so $(N,+, \circ)$ is a brace. However, N is not a $\mathbb{Z}[i]$-brace, since $\gamma_{(a+i b)} \notin \operatorname{Aut}_{\mathbb{Z}[i]}(\mathbb{Z}[i])$ for a odd.

Substructures

Def. Let $(N,+, \circ)$ be a R-brace and let $I \subseteq N$. We call I an
R-subbrace / left R-ideal / R-ideal
if it is a
subbrace / left ideal / ideal $+R$-submodule
The substructures of an R-braces have a good behaviour

- If I is an R-ideal of N, then the quotient brace N / I is an R-brace
- The elements of the right series of an R-brace are R-ideals
- The elements of the left series of an R-brace are left R-ideals

A splitting theorem

Let R be a commutative ring with 1 , and let

$$
R=\bigoplus_{i=1}^{t} R_{i}
$$

be a direct sum decomposition of R into ideals. Let e_{1}, \ldots, e_{t} be the orthogonal idempotents associated to the decomposition $\left(1=\sum_{i=1}^{t} e_{i}\right)$.

Proposition. Let $(N,+)$ be an R-module. Then,

$$
\begin{equation*}
N=\bigoplus_{i=1}^{t} e_{i} N \tag{1}
\end{equation*}
$$

where $e_{i} N$ is an R-module, which is annihilated by R_{j} for all $j \neq i$. If $(N,+, \circ)$ is an R-brace, then, each $e_{i} N$ is a left R-ideal of the brace N. Moreover,
(1) is an R-braces decomposition \Longleftrightarrow all the $e_{i} N$ are (R-)ideals of N.

Finite braces

Let $R=\mathbb{Z}$ and let ($N,+, \circ$) be a finite brace.
The action of \mathbb{Z} on N can not be faithful, so N is a $\mathbb{Z} / d \mathbb{Z}$-module for some $d \neq 0$.

Let $d=p_{1}^{a_{1}} \ldots p_{t}^{a_{t}}$, where the p_{i} 's are pairwise distinct primes, then

$$
\begin{aligned}
\mathbb{Z} / d \mathbb{Z} & \cong \bigoplus_{i=1}^{t} \mathbb{Z} / p_{i}^{a_{i}} \mathbb{Z} \\
N & =\bigoplus_{i=1}^{t} N_{i}
\end{aligned}
$$

where N_{i} is the Sylow p_{i}-subgroup of $(N,+)$ and they are also Sylow p_{i}-subgroup of (N, \circ).

If (N, \circ) is nilpotent we recover the core of [Theorem 1, Byott JA 2013] for braces.

Finite $\mathcal{O}_{\mathcal{K}}$-braces

Let K be a number field and let \mathcal{O}_{K} be its ring of integers.
Let $(N,+, \circ)$ be a finite \mathcal{O}_{K}-brace.
The action of \mathcal{O}_{K} on N can not be faithful, so N is a \mathcal{O}_{K} / I-module for some non-zero ideal I.

Let $I=P_{1}^{a_{1}} \ldots P_{t}^{a_{t}}$, where the P_{i} 's are pairwise distinct prime ideals of \mathcal{O}_{K}, then

$$
\mathcal{O}_{K} / I \cong \bigoplus_{i=1}^{t} \mathcal{O}_{K} / P_{i}^{a_{i}}
$$

We get

$$
N=\bigoplus_{i=1}^{t} N_{i}
$$

where N_{i} is the P_{i}-component of $(N,+)$ and is a left \mathcal{O}_{K}-ideal of the brace N.

The previous proposition says that the decomposition of N is an \mathcal{O}_{K}-brace decomposition if and only if all the N_{i} are ideals of N.

Corollary. Let $R=\bigoplus_{i=1}^{t} R_{i}$ be a commutative ring with identity, with associated orthogonal idempotents $\left\{e_{1}, \ldots, e_{t}\right\}$.

Let $(N,+, \cdot)$ be a radical ring. If N is an R-algebra, then,

$$
\begin{equation*}
N=\bigoplus_{i=1}^{t} e_{i} N \tag{2}
\end{equation*}
$$

as R-braces, namely

$$
1+N=\bigoplus_{i=1}^{t}\left(1+e_{i} N\right)
$$

Relation between the additive and the multiplicative group of a module brace

Module braces of small rank

Let D be a PID, and let M be a f.g. torsion D-module. We define $\operatorname{rank}_{D} M=\#$ indecomp. cyclic factors of the D-mod decomposition of M

Theorem 1. Let p be a prime number, and let D be a PID such that p is a prime in D. Let $(N,+, \circ)$ be a D-brace of order a power of p. Assume that $r=\operatorname{rank}_{\mathrm{D}} \mathrm{N}<\mathrm{p}-1$.

Then $(N,+)$ and (N, \circ) have the same number of elements of each order. In particular, if (N, \circ) is abelian, then $(N,+) \cong(N, \circ)$.

- [FCC12, Bac16] give the same result for $D=\mathbb{Z}$.
- For a D-braces, the condition of having few ciclic factors in the D-module decomposition can be much weaker than the condition of having few ciclic factors in the \mathbb{Z}-module decomposition. In fact, if $D / p D=\mathbb{F}_{p^{\lambda}}$, then

$$
\operatorname{rank}_{\mathbb{Z}} \mathrm{N}=\lambda \cdot \operatorname{rank}_{\mathrm{D}} \mathrm{~N}
$$

Module braces over $\mathbb{Z}_{p}(\lambda)$

Let $\mathbb{Q}_{p}(\lambda)$ be the unramified extensions of degree λ of the field of the p-adic numbers \mathbb{Q}_{p}. Its ring of integers $\mathbb{Z}_{p}(\lambda)$ is an examples of ring D fulfilling the request of the theorem.

Corollary. Let $(N,+, \circ)$ be a $\mathbb{Z}_{p}(\lambda)$-brace of order a power of p. If

$$
\operatorname{rank}_{\mathbb{Z}_{\mathrm{p}}(\lambda)} \mathrm{N}<(\mathrm{p}-1)
$$

$$
\operatorname{rank}_{\mathbb{Z}} \mathrm{N}<\lambda(\mathrm{p}-1),
$$

then $(N,+)$ and (N, \circ) have the same number of elements of each order. In particular, if (N, \circ) is abelian, then $(N,+) \cong(N, \circ)$.

Module braces over local rings

Lemma. Let $\left(S, \mathfrak{m}, \mathbb{F}_{p^{\lambda}}\right)$ be a finite local ring. Then every S-brace is also a $\mathbb{Z}_{p}(\lambda)$-brace, by restriction of scalars.

Proof. Use an Hensel's type argument.
Corollary. Let $\left(S, \mathfrak{m}, \mathbb{F}_{p^{\lambda}}\right)$ be a local ring, and let $(N,+, \circ)$ be an S-brace of order a power of p, such that $\operatorname{rank}_{\mathbb{Z}} \mathrm{N}<\lambda(\mathrm{p}-1)$.

Then $(N,+)$ and (N, \circ) have the same number of elements of each order. In particular, if (N, \circ) is abelian, then $(N,+) \cong(N, \circ)$.

Finite module brace over a general ring

Let R be any commutative ring, and let N be a finite R-brace.
Then $A=R / \operatorname{Ann}_{R}(N)$ is finite, and therefore artinian. So,

$$
A=\bigoplus_{i=1}^{t} A_{i}
$$

where each $\left(A_{i}, \mathfrak{m}_{i}, \mathbb{F}_{p_{i}}\right)$ is a local finite ring.
Let e_{1}, \ldots, e_{t} be the orthogonal idempotents of the decomposition of A.
Letting $N_{i}=N e_{i}$, we have

$$
\begin{equation*}
N=\bigoplus_{i=1}^{t} N_{i} \tag{3}
\end{equation*}
$$

where this equality holds for N as a module, and for N as a module brace in the case when N_{1}, \ldots, N_{t} are ideals of N.

Since N_{i} is a A_{i}-brace, we can study each of them by our method, if they are small.

In particular
Proposition. Let N be a finite A-brace and assume that N_{1}, \ldots, N_{t} are ideals of the brace N. If, $\forall i \in\{1, \ldots, t\}$,

$$
\operatorname{rank}_{\mathbb{Z}}\left(N_{i}\right)<\lambda_{i}\left(p_{i}-1\right)
$$

then $(N,+)$ and (N, \circ) have the same number of elements of each order, and if (N, \circ) is abelian, then $(N,+) \cong(N, \circ)$.

An application to Fuchs' problem

In Fuchs' book "Abelian Groups" (1960) the following question is posed (Problem 72)

Characterize the groups which are the groups of all units in a commutative and associative ring with identity.

The problem had already been considered in some particular cases

- The Dirichlet's Unit Thm (1846): K number field $[K: \mathbb{Q}]=r+2 s$, \mathcal{O}_{K} ring of integers

$$
\mathcal{O}_{K}^{*} \cong \mathbb{Z} / 2 n \mathbb{Z} \times \mathbb{Z}^{r+s-1}
$$

- G. Higman (1940) discovered a perfect analogue of Dirichlet's Unit Theorem for a group ring $\mathbb{Z}[T]$ where T is a finite abelian group:

$$
(\mathbb{Z}[T])^{*} \cong \mathbb{Z} / 2 \mathbb{Z} \times T \times \mathbb{Z}^{n}
$$

for a suitable explicit constant $n=n(T)$.

Finitely generated abelian groups

Fuchs' question for finitely generated abelian groups
(idc+ R.Dvornicich AMPA18 and BLMS18; idc JLMS 2020)
A ring with $1, A^{*}$ group of units of A. Assume that A^{*} is finitely generated and abelian

$$
A^{*} \cong\left(A^{*}\right)_{\text {tors }} \times \mathbb{Z}^{r_{A}}
$$

Problem: what groups arise?

- T finite abelian group: $\exists A \in \mathcal{C}$ such that $\left(A^{*}\right)_{\text {tors }} \cong T$?
- if $\left(A^{*}\right)_{\text {tors }} \cong T$ what can we say on r_{A} ?

We are interested in the minimum value that the rank can assume for a fixed torsion part T, since increase the rank is easy.

Reduction step 1

Let $A_{0}(=\mathbb{Z}$ or $\mathbb{Z} / n \mathbb{Z})$ be the fundamental subring of A and consider the ring $R=A_{0}\left[\left(A^{*}\right)_{\text {tors }}\right]$, which is a subring of A. Then $R^{*} \leq A^{*}$, so

$$
\left(A^{*}\right)_{\text {tors }}=\left(R^{*}\right)_{\text {tors }}
$$

and

$$
r_{A} \geq r_{R}
$$

So, up to changing $A \longleftrightarrow R=A_{0}\left[\left(A^{*}\right)_{\text {tors }}\right]$, we can restrict ourself to consider:
commutative rings which are finitely gen. and integral over A_{0}.
This class of rings is much simpler to study, but allow us to obtain ALL the realisable groups of units.

Reduction step 2: splitting of the ring

Proposition (Pearson \& Schneider 1970)

Let A be a commutative ring which is finitely generated and integral over its fundamental subring. Then $A=A_{1} \oplus A_{2}$, where A_{1} is a finite ring and the torsion ideal of A_{2} is contained in its nilradical.

We will say that A is a TN ring if its torsion ideal is contained in the nilradical.

We are left to study finite rings and TN rings.

How do module braces come out?

Let A be a commutative ring with nilradical \mathfrak{N}. For any ideal $\mathfrak{I} \subseteq \mathfrak{N}$ we have the following exact sequence

$$
1 \rightarrow 1+\mathfrak{I} \rightarrow A^{*} \rightarrow(A / \mathfrak{I})^{*} \rightarrow 1
$$

- the ring A / \mathfrak{I} is simpler to study, for example for $\mathfrak{I}=\mathfrak{N}$ is reduced;
- I is a radical (nilpotent) ring and also a A-algebra, so we can study the A-brace $(\mathfrak{I},+, \circ)$ via our previous result that, for radical rings, holds in the following stronger form.

Theorem 2. Let N be a commutative radical ring of order a power of an odd prime p. Suppose that $(N,+, \circ)$ is a A-brace. If $(N,+)$ or (N, \circ) is "small with respect to A ", then $(N,+) \cong(N, \circ)$.

Proof (sketch). If $(N,+)$ is " A-small" we can apply Theorem 1 , and get $(N,+) \cong(N, \circ)$.

If (N, \circ) is " A-small" we have an argument, specific for nilpotent rings, which guarantees that also $(N,+)$ is small, so Theorem 1 gives $(N,+) \cong(N, \circ)$.

Finite rings

- We can reduce to consider the case $\left(A, \mathfrak{m}, \mathbb{F}_{p^{\lambda}}\right)$ finite local ring.
- The exact sequence for $\mathfrak{I}=\mathfrak{m}$ becomes

$$
1 \rightarrow 1+\mathfrak{m} \rightarrow A^{*} \rightarrow \mathbb{F}_{p^{\lambda}}^{*} \rightarrow 1
$$

and splits, so

$$
A^{*}=\mathbb{F}_{p^{\lambda}}^{*} \times 1+\mathfrak{m}
$$

Theorem 3. The small finite abelian groups occurring as group of units of finite local rings $\left(A, \mathfrak{m}, \mathbb{F}_{p^{\lambda}}\right)$ of characteristic a power of an odd prime p are exactly those of the form

$$
\mathbb{F}_{p^{\lambda}}^{*} \times H^{\lambda}
$$

where λ is a positive integer, and H varies in the class of finite abelian p-groups with $\operatorname{rank}_{\mathbb{Z}}(H)<p-1$.

Here small means λ-small, i.e., $\operatorname{rank}_{\mathbb{Z}}\left(A^{*}\right)_{p}<\lambda(p-1)$

TN rings

If A is TN , by choosing $\mathfrak{I}=\mathfrak{N}_{\text {tors }}$, we get the following exact sequence

$$
1 \rightarrow 1+\mathfrak{N}_{\text {tors }} \hookrightarrow A^{*} \xrightarrow{\phi}\left(A / \mathfrak{N}_{\text {tors }}\right)^{*} \rightarrow 1 .
$$

where $A / \mathfrak{N}_{\text {tors }}$ is a torsion free ring.
The possibility for $\left(A / \mathfrak{N}_{\text {tors }}\right)^{*}$ are known, by the following
Theorem (idc JLMS20). Let T be a finite abelian group of even order. Then there exists an explicit constant $g(T)$ such that the following holds:

$$
T \times \mathbb{Z}^{r}
$$

is the group of units of a torsion-free ring if and only if $r \geq g(T)$.

- We are left to study $1+\mathfrak{N}_{\text {tors }}$.

The radical ring $\mathfrak{N}_{\text {tors }}$

$1+\mathfrak{N}_{\text {tors }}$ is the adjoint group of $\mathfrak{N}_{\text {tors }}$ and
$\left(\mathfrak{N}_{\text {tors }},+, \circ\right)$ is a module brace over the ring A
We appeal again to our Thm 2 applied to the p-Sylow of $\mathfrak{N}_{\text {tors }}(p \neq 2)$.
Theorem 2. Let N be a commutative radical ring of order a power of an odd prime p. Suppose that $(N,+, \circ)$ is a A-brace. If $(N,+)$ or (N, \circ) is "small with respect to A ", then $(N,+) \cong(N, \circ)$.

A-small means rank $N<\lambda(p-1)$ where λ can be described case by case...

Remark. Very few is known in case $p=2$.

Cyclic groups

Theorem (Pearson and Schneider (1970))
A finite cyclic group is the group of units of a ring if and only if its order is the product of a set of pairwise coprime integers of the following list:
a) $p^{\lambda}-1$ where p is a prime and $\lambda \geq 1$;
b) $(p-1) p^{k}$ where $p>2$ is a prime and $k \geq 1$;
c) $2 d$ where $d>0$ is odd;
d) $4 d$ where d is an odd integer and $\forall p \mid d, p \equiv 1(\bmod 4)$.

Remark. $\mathbb{Z} / 44 \mathbb{Z}$ and $\mathbb{Z} / 328 \mathbb{Z}$ are not realisable ($44=4 \times 11$, and $328=8 \times 41$ are not in the list). On the other hand $\mathbb{Z}\left[\zeta_{44}\right]^{*} \cong \mathbb{Z} / 44 \mathbb{Z} \times \mathbb{Z}^{9}$ and $\mathbb{Z}\left[\zeta_{328}\right]^{*} \cong \mathbb{Z} / 328 \mathbb{Z} \times \mathbb{Z}^{79}$ (these are the minimum values for the rank also in the class of torsion free rings).

Theorem

$$
\begin{aligned}
& \mathbb{Z} / 44 \mathbb{Z} \times \mathbb{Z}^{r} \text { is realisable } \Longleftrightarrow r \geq 9 \\
& \mathbb{Z} / 328 \mathbb{Z} \times \mathbb{Z}^{r} \text { is realisable } \Longleftrightarrow r \geq 1
\end{aligned}
$$

(Del Corso I., Module braces: relations between the additive and the multiplicative group arXiv:2208.01592
圊 Del Corso I., Stefanello L., Fuchs'problem via module braces, work in progress.

Thank you!

