
MODULE BRACES: THEORY AND APPLICATIONS

Ilaria Del Corso

Omaha, May 30, 2023

Dipartimento di Matematica

Università di Pisa
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Generalities on skew braces



A skew brace is a group (N,+) together with one of the following

• an additional group operation “ ◦ ” on N such that the following

brace axiom holds for x , y , z ∈ N

x ◦ (y + z) = (x ◦ y)− x + (x ◦ z) .

• a Gamma Function, namely a function γ : N → Aut(N,+) such

that, for x , y ∈ N,

γ(x+ γx(y)) = γxγy

• an additional binary operation ⋆ such that, for all x , y , z ∈ N,

x ⋆ (y + z) = x ⋆ y + y + x ⋆ z− y

with the additional condition that the operation ◦ defined by

x ◦ y = x+ x ⋆ y + y

defines on N a group structure.
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Relations between (N ,+, ◦), (N ,+, γ) and (N ,+, ⋆)

The relations between the ◦ operation and the GF γ and the ⋆ operation

defining the same skew brace, are given by

γx(y) = −x + x ◦ y γx(y) = x ⋆ y + y ∀x , y ∈ N

and the properties of ◦, ⋆ and the function γ correspond to each other.
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Let I be subset of a skew brace (N,+, ◦) = (N,+, γ).

• I is a subskew brace if it is a subgroup both of (N,+) and (N, ◦);
In terms of the GF: I is a subgroup of (N,+) and it is γ(I ) invariant,

(γx(I ) ⊆ I for each x ∈ I ). This means that γ|I is a GF for (I ,+)).

• I is a left ideal if it is a subgroup of (N,+) and is γ(N) invariant.

• I is an ideal if it is γ(N) invariant and it is a normal subgroup of

both (N,+) and (N, ◦).

{ideals of N} ⊆ {left ideals of N} ⊆ {subskew braces of N}

Let (M,+, γ) and (N,+′, γ′) be skew braces, and let f : M → N be an

isomorphism of the additive groups.

f is skew brace isomorphism ⇐⇒ f is also a morphism of the

multiplicative groups⇐⇒ f γx = γ′
f (x)f , for each x ∈ M.
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Braces and radical rings

A brace is a skew brace with abelian additive group.

Example. Let (N,+, ·) be a radical ring.

(N,+, ·) is a brace when we take ⋆ = ·.

The operation ◦ of this brace is x ◦ y = x + x · y + y and it is called the

adjoint operation.

Any radical ring is a two-sided brace, namely a brace for which both the

left-brace-axiom and the right-brace-axiom hold.

Conversely, if (N,+, ◦) is a two-sided brace, then defining

x · y = −x + x ◦ y − y

we have that (N,+, ·) is a radical ring.

The gamma function associated to the brace (N,+, ◦) arising from a

radical ring, is given by

γx(y) = −x + x ◦ y = (x + 1)y .
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Module braces



Module braces

Let (N,+, ◦) = (N,+, γ) = (N,+, ⋆) be a brace and assume that (N,+)

is a R-module over some ring R.

We say that N is an R-(module) brace if

γ : N → AutR(N)

namely, for all x , y ∈ N and r ∈ R,

rγx(y) = γx(ry).

Equivalently, in terms of the ⋆ operation,

r(x ⋆ y) = x ⋆ ry .

With this language, a brace is called Z-brace.

The case when R is a field has been already considered by F. Catino, I.

Colazzo, and P. Stefanelli (2015, 2019) and by A. Smoktunowicz (2022)
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Examples

1) An R-module N with the trivial brace structure is always an R-brace,

since the corresponding gamma function is the trivial map x 7→ γx = id.

2) Let N = (N,+, ·) be a radical ring.

The associated gamma function is γx(y) = (1 + x)y .

If (N,+) has a right R-module structure, then (N,+, ◦) is an R-module

brace since γx ∈ AutR(N) for all x .

3) Let R = Z[i ], let (N,+) be the additive group Z[i ]× Z[i ], and define

(α1, β1) ◦ (α2, β2) = (α1 + (−1)ℜ(α1)α2, β1 + (−1)ℜ(α1)β2)

Then (N,+, ◦) is an R-brace.

4) Let N = Z[i ] considered as a Z[i ]-module, and let γ : Z[i ]→ Aut(Z[i ])
be the map defined by

γ(a+ib)(x + iy) = ((−1)ax + iy).

It is easy to verify that γ is a gamma function, so (N,+, ◦) is a brace.

However, N is not a Z[i ]-brace, since γ(a+ib) ̸∈ AutZ[i ](Z[i ]) for a odd. 7



Substructures

Def. Let (N,+, ◦) be a R-brace and let I ⊆ N. We call I an

R-subbrace / left R-ideal / R-ideal

if it is a

subbrace / left ideal / ideal + R-submodule

The substructures of an R-braces have a good behaviour

• If I is an R-ideal of N, then the quotient brace N/I is an R-brace

• The elements of the right series of an R-brace are R-ideals

• The elements of the left series of an R-brace are left R-ideals
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A splitting theorem

Let R be a commutative ring with 1, and let

R =
t⊕

i=1

Ri

be a direct sum decomposition of R into ideals. Let e1, . . . , et be the

orthogonal idempotents associated to the decomposition (1 =
∑t

i=1 ei ).

Proposition. Let (N,+) be an R-module. Then,

N =
t⊕

i=1

eiN, (1)

where eiN is an R-module, which is annihilated by Rj for all j ̸= i .

If (N,+, ◦) is an R-brace, then, each eiN is a left R-ideal of the brace N.

Moreover,

(1) is an R-braces decomposition ⇐⇒ all the eiN are (R-)ideals of N.
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Finite braces

Let R = Z and let (N,+, ◦) be a finite brace.

The action of Z on N can not be faithful, so N is a Z/dZ-module for

some d ̸= 0.

Let d = pa11 . . . patt , where the pi ’s are pairwise distinct primes, then

Z/dZ ∼=
t⊕

i=1

Z/paii Z

N =
t⊕

i=1

Ni ,

where Ni is the Sylow pi -subgroup of (N,+) and they are also Sylow

pi -subgroup of (N, ◦).

If (N, ◦) is nilpotent we recover the core of [Theorem 1, Byott JA 2013]

for braces.
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Finite OK -braces

Let K be a number field and let OK be its ring of integers.

Let (N,+, ◦) be a finite OK -brace.

The action of OK on N can not be faithful, so N is a OK/I -module for

some non-zero ideal I .

Let I = Pa1
1 . . .Pat

t , where the Pi ’s are pairwise distinct prime ideals of

OK , then

OK/I ∼=
t⊕

i=1

OK/P
ai
i .

We get

N =
t⊕

i=1

Ni ,

where Ni is the Pi -component of (N,+) and is a left OK -ideal of the

brace N.

The previous proposition says that the decomposition of N is an

OK -brace decomposition if and only if all the Ni are ideals of N. 11



Corollary. Let R =
⊕t

i=1 Ri be a commutative ring with identity, with

associated orthogonal idempotents {e1, . . . , et}.

Let (N,+, ·) be a radical ring. If N is an R-algebra, then,

N =
t⊕

i=1

eiN (2)

as R-braces, namely

1 + N =
t⊕

i=1

(1 + eiN).
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Relation between the additive

and the multiplicative group of a

module brace



Module braces of small rank

Let D be a PID, and let M be a f.g. torsion D-module. We define

rankDM = #indecomp. cyclic factors of the D-mod decomposition of M

Theorem 1. Let p be a prime number, and let D be a PID such that p

is a prime in D. Let (N,+, ◦) be a D-brace of order a power of p.

Assume that r = rankDN < p− 1.

Then (N,+) and (N, ◦) have the same number of elements of each

order. In particular, if (N, ◦) is abelian, then (N,+) ∼= (N, ◦).

• [FCC12, Bac16] give the same result for D = Z.
• For a D-braces, the condition of having few ciclic factors in the

D-module decomposition can be much weaker than the condition of

having few ciclic factors in the Z-module decomposition. In fact, if

D/pD = Fpλ , then

rankZN = λ · rankDN.
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Module braces over Zp(λ)

Let Qp(λ) be the unramified extensions of degree λ of the field of the

p-adic numbers Qp. Its ring of integers Zp(λ) is an examples of ring D

fulfilling the request of the theorem.

Corollary. Let (N,+, ◦) be a Zp(λ)-brace of order a power of p. If

rankZp(λ)N < (p− 1),

rankZN < λ(p− 1),

then (N,+) and (N, ◦) have the same number of elements of each

order. In particular, if (N, ◦) is abelian, then (N,+) ∼= (N, ◦).
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Module braces over local rings

Lemma. Let (S ,m,Fpλ) be a finite local ring. Then every S-brace is

also a Zp(λ)-brace, by restriction of scalars.

Proof. Use an Hensel’s type argument.

Corollary. Let (S ,m,Fpλ) be a local ring, and let (N,+, ◦) be an

S-brace of order a power of p, such that rankZN < λ(p− 1).

Then (N,+) and (N, ◦) have the same number of elements of each order.

In particular, if (N, ◦) is abelian, then (N,+) ∼= (N, ◦).
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Finite module brace over a general ring

Let R be any commutative ring, and let N be a finite R-brace.

Then A = R/AnnR(N) is finite, and therefore artinian. So,

A =
t⊕

i=1

Ai

where each (Ai ,mi ,Fp
λi
i

) is a local finite ring.

Let e1, . . . , et be the orthogonal idempotents of the decomposition of A.

Letting Ni = Nei , we have

N =
t⊕

i=1

Ni , (3)

where this equality holds for N as a module, and for N as a module brace

in the case when N1, . . . ,Nt are ideals of N.
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Since Ni is a Ai -brace, we can study each of them by our method, if they

are small.

In particular

Proposition. Let N be a finite A-brace and assume that N1, . . . ,Nt are

ideals of the brace N. If, ∀i ∈ {1, . . . , t},

rankZ(Ni ) < λi (pi − 1)

then (N,+) and (N, ◦) have the same number of elements of each order,

and if (N, ◦) is abelian, then (N,+) ∼= (N, ◦).
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An application to Fuchs’ problem



In Fuchs’ book ”Abelian Groups” (1960) the following question is posed

(Problem 72)

Characterize the groups which are the groups of all units

in a commutative and associative ring with identity.

The problem had already been considered in some particular cases

• The Dirichlet’s Unit Thm (1846): K number field [K : Q] = r + 2s,

OK ring of integers

O∗
K
∼= Z/2nZ× Zr+s−1

• G. Higman (1940) discovered a perfect analogue of Dirichlet’s Unit

Theorem for a group ring Z[T ] where T is a finite abelian group:

(Z[T ])∗ ∼= Z/2Z× T × Zn

for a suitable explicit constant n = n(T ).
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Finitely generated abelian groups

Fuchs’ question for finitely generated abelian groups

(idc+ R.Dvornicich AMPA18 and BLMS18; idc JLMS 2020)

A ring with 1, A∗ group of units of A. Assume that A∗ is finitely

generated and abelian

A∗ ∼= (A∗)tors × ZrA

Problem: what groups arise?

• T finite abelian group: ∃ A ∈ C such that (A∗)tors ∼= T?

• if (A∗)tors ∼= T what can we say on rA?

We are interested in the minimum value that the rank can assume for a

fixed torsion part T , since increase the rank is easy.
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Reduction step 1

Let A0(=Z or Z/nZ) be the fundamental subring of A and consider the

ring R = A0[(A
∗)tors ], which is a subring of A. Then R∗ ≤ A∗, so

(A∗)tors = (R∗)tors

and

rA ≥ rR .

So, up to changing A←→ R = A0[(A
∗)tors ], we can restrict ourself to

consider:

commutative rings which are finitely gen. and integral over A0.

This class of rings is much simpler to study, but allow us to obtain ALL

the realisable groups of units.
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Reduction step 2: splitting of the ring

Proposition (Pearson & Schneider 1970)

Let A be a commutative ring which is finitely generated and integral over

its fundamental subring. Then A = A1 ⊕ A2, where A1 is a finite ring and

the torsion ideal of A2 is contained in its nilradical.

We will say that A is a TN ring if its torsion ideal is contained in the

nilradical.

We are left to study finite rings and TN rings.
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How do module braces come out?

Let A be a commutative ring with nilradical N. For any ideal I ⊆ N we

have the following exact sequence

1→ 1 + I→ A∗→ (A/I)∗ → 1

• the ring A/I is simpler to study, for example for I = N is reduced;

• I is a radical (nilpotent) ring and also a A-algebra, so we can study

the A-brace (I,+, ◦) via our previous result that, for radical rings,

holds in the following stronger form.

Theorem 2. Let N be a commutative radical ring of order a power of an

odd prime p. Suppose that (N,+, ◦) is a A-brace. If (N,+) or (N, ◦) is
“small with respect to A”, then (N,+) ∼= (N, ◦).

Proof (sketch). If (N,+) is “A-small” we can apply Theorem 1, and get

(N,+) ∼= (N, ◦).

If (N, ◦) is “A-small” we have an argument, specific for nilpotent rings,

which guarantees that also (N,+) is small, so Theorem 1 gives

(N,+) ∼= (N, ◦).
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Finite rings

• We can reduce to consider the case (A,m,Fpλ) finite local ring.

• The exact sequence for I = m becomes

1→ 1 +m→ A∗→F∗
pλ → 1.

and splits, so

A∗ = F∗
pλ × 1 +m

Theorem 3. The small finite abelian groups occurring as group of units

of finite local rings (A,m,Fpλ) of characteristic a power of an odd prime

p are exactly those of the form

F∗
pλ × Hλ,

where λ is a positive integer, and H varies in the class of finite abelian

p-groups with rankZ(H) < p − 1.

Here small means λ-small, i.e., rankZ(A
∗)p < λ(p − 1)

23



TN rings

If A is TN, by choosing I = Ntors , we get the following exact sequence

1→ 1 +Ntors ↪→ A∗ ϕ→ (A/Ntors)
∗ → 1.

where A/Ntors is a torsion free ring.

The possibility for (A/Ntors)
∗ are known, by the following

Theorem (idc JLMS20). Let T be a finite abelian group of even order.

Then there exists an explicit constant g(T ) such that the following holds:

T × Zr

is the group of units of a torsion-free ring if and only if r ≥ g(T ).

• We are left to study 1 +Ntors .
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The radical ring Ntors

1 +Ntors is the adjoint group of Ntors and

(Ntors ,+, ◦) is a module brace over the ring A

We appeal again to our Thm 2 applied to the p-Sylow of Ntors ( p ̸= 2).

Theorem 2. Let N be a commutative radical ring of order a power of an

odd prime p. Suppose that (N,+, ◦) is a A-brace. If (N,+) or (N, ◦) is
“small with respect to A”, then (N,+) ∼= (N, ◦).

A-small means rankZN < λ (p − 1) where λ can be described case by

case...

Remark. Very few is known in case p = 2 .
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Cyclic groups

Theorem (Pearson and Schneider (1970))

A finite cyclic group is the group of units of a ring if and only if its order

is the product of a set of pairwise coprime integers of the following list:

a) pλ − 1 where p is a prime and λ ≥ 1;

b) (p − 1)pk where p > 2 is a prime and k ≥ 1;

c) 2d where d > 0 is odd;

d) 4d where d is an odd integer and ∀p|d , p ≡ 1 (mod 4).

Remark. Z/44Z and Z/328Z are not realisable (44 = 4× 11, and

328 = 8× 41 are not in the list). On the other hand

Z[ζ44]∗ ∼= Z/44Z× Z9 and Z[ζ328]∗ ∼= Z/328Z× Z79 (these are the

minimum values for the rank also in the class of torsion free rings).

Theorem

Z/44Z× Zr is realisable ⇐⇒ r ≥ 9

Z/328Z× Zr is realisable ⇐⇒ r ≥ 1
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the multiplicative group arXiv:2208.01592
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braces, work in progress.

Thank you!
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